Blame | Last modification | View Log | RSS feed
package Digest::SHA::PurePerl;require 5.003000;use strict;use warnings;use vars qw($VERSION @ISA @EXPORT_OK);use Fcntl qw(O_RDONLY);use integer;use Carp qw(croak);$VERSION = '5.97';require Exporter;@ISA = qw(Exporter);@EXPORT_OK = (); # see "SHA and HMAC-SHA functions" below# Inherit from Digest::base if possibleeval {require Digest::base;push(@ISA, 'Digest::base');};# ref. src/sha.c and sha/sha64bit.c from Digest::SHAmy $MAX32 = 0xffffffff;my $uses64bit = (((1 << 16) << 16) << 16) << 15;my @H01 = ( # SHA-1 initial hash value0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476,0xc3d2e1f0);my @H0224 = ( # SHA-224 initial hash value0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4);my @H0256 = ( # SHA-256 initial hash value0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19);my(@H0384, @H0512, @H0512224, @H0512256); # filled in later if $uses64bit# Routines with a "_c_" prefix return Perl code-fragments which are# eval'ed at initialization. This technique emulates the behavior# of the C preprocessor, allowing the optimized transform code from# Digest::SHA to be more easily translated into Perl.sub _c_SL32 { # code to shift $x left by $n bitsmy($x, $n) = @_;"($x << $n)"; # even works for 64-bit integers# since the upper 32 bits are# eventually discarded in _digcpy}sub _c_SR32 { # code to shift $x right by $n bitsmy($x, $n) = @_;my $mask = (1 << (32 - $n)) - 1;"(($x >> $n) & $mask)"; # "use integer" does arithmetic# shift, so clear upper bits}sub _c_Ch { my($x, $y, $z) = @_; "($z ^ ($x & ($y ^ $z)))" }sub _c_Pa { my($x, $y, $z) = @_; "($x ^ $y ^ $z)" }sub _c_Ma { my($x, $y, $z) = @_; "(($x & $y) | ($z & ($x | $y)))" }sub _c_ROTR { # code to rotate $x right by $n bitsmy($x, $n) = @_;"(" . _c_SR32($x, $n) . " | " . _c_SL32($x, 32 - $n) . ")";}sub _c_ROTL { # code to rotate $x left by $n bitsmy($x, $n) = @_;"(" . _c_SL32($x, $n) . " | " . _c_SR32($x, 32 - $n) . ")";}sub _c_SIGMA0 { # ref. NIST SHA standardmy($x) = @_;"(" . _c_ROTR($x, 2) . " ^ " . _c_ROTR($x, 13) . " ^ " ._c_ROTR($x, 22) . ")";}sub _c_SIGMA1 {my($x) = @_;"(" . _c_ROTR($x, 6) . " ^ " . _c_ROTR($x, 11) . " ^ " ._c_ROTR($x, 25) . ")";}sub _c_sigma0 {my($x) = @_;"(" . _c_ROTR($x, 7) . " ^ " . _c_ROTR($x, 18) . " ^ " ._c_SR32($x, 3) . ")";}sub _c_sigma1 {my($x) = @_;"(" . _c_ROTR($x, 17) . " ^ " . _c_ROTR($x, 19) . " ^ " ._c_SR32($x, 10) . ")";}sub _c_M1Ch { # ref. Digest::SHA sha.c (sha1 routine)my($a, $b, $c, $d, $e, $k, $w) = @_;"$e += " . _c_ROTL($a, 5) . " + " . _c_Ch($b, $c, $d) ." + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";}sub _c_M1Pa {my($a, $b, $c, $d, $e, $k, $w) = @_;"$e += " . _c_ROTL($a, 5) . " + " . _c_Pa($b, $c, $d) ." + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";}sub _c_M1Ma {my($a, $b, $c, $d, $e, $k, $w) = @_;"$e += " . _c_ROTL($a, 5) . " + " . _c_Ma($b, $c, $d) ." + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";}sub _c_M11Ch { my($k, $w) = @_; _c_M1Ch('$a', '$b', '$c', '$d', '$e', $k, $w) }sub _c_M11Pa { my($k, $w) = @_; _c_M1Pa('$a', '$b', '$c', '$d', '$e', $k, $w) }sub _c_M11Ma { my($k, $w) = @_; _c_M1Ma('$a', '$b', '$c', '$d', '$e', $k, $w) }sub _c_M12Ch { my($k, $w) = @_; _c_M1Ch('$e', '$a', '$b', '$c', '$d', $k, $w) }sub _c_M12Pa { my($k, $w) = @_; _c_M1Pa('$e', '$a', '$b', '$c', '$d', $k, $w) }sub _c_M12Ma { my($k, $w) = @_; _c_M1Ma('$e', '$a', '$b', '$c', '$d', $k, $w) }sub _c_M13Ch { my($k, $w) = @_; _c_M1Ch('$d', '$e', '$a', '$b', '$c', $k, $w) }sub _c_M13Pa { my($k, $w) = @_; _c_M1Pa('$d', '$e', '$a', '$b', '$c', $k, $w) }sub _c_M13Ma { my($k, $w) = @_; _c_M1Ma('$d', '$e', '$a', '$b', '$c', $k, $w) }sub _c_M14Ch { my($k, $w) = @_; _c_M1Ch('$c', '$d', '$e', '$a', '$b', $k, $w) }sub _c_M14Pa { my($k, $w) = @_; _c_M1Pa('$c', '$d', '$e', '$a', '$b', $k, $w) }sub _c_M14Ma { my($k, $w) = @_; _c_M1Ma('$c', '$d', '$e', '$a', '$b', $k, $w) }sub _c_M15Ch { my($k, $w) = @_; _c_M1Ch('$b', '$c', '$d', '$e', '$a', $k, $w) }sub _c_M15Pa { my($k, $w) = @_; _c_M1Pa('$b', '$c', '$d', '$e', '$a', $k, $w) }sub _c_M15Ma { my($k, $w) = @_; _c_M1Ma('$b', '$c', '$d', '$e', '$a', $k, $w) }sub _c_W11 { my($s) = @_; '$W[' . (($s + 0) & 0xf) . ']' }sub _c_W12 { my($s) = @_; '$W[' . (($s + 13) & 0xf) . ']' }sub _c_W13 { my($s) = @_; '$W[' . (($s + 8) & 0xf) . ']' }sub _c_W14 { my($s) = @_; '$W[' . (($s + 2) & 0xf) . ']' }sub _c_A1 {my($s) = @_;my $tmp = _c_W11($s) . " ^ " . _c_W12($s) . " ^ " ._c_W13($s) . " ^ " . _c_W14($s);"((\$tmp = $tmp), (" . _c_W11($s) . " = " . _c_ROTL('$tmp', 1) . "))";}# The following code emulates the "sha1" routine from Digest::SHA sha.cmy $sha1_code = 'my($K1, $K2, $K3, $K4) = ( # SHA-1 constants0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6);sub _sha1 {my($self, $block) = @_;my(@W, $a, $b, $c, $d, $e, $tmp);@W = unpack("N16", $block);($a, $b, $c, $d, $e) = @{$self->{H}};' ._c_M11Ch('$K1', '$W[ 0]' ) . _c_M12Ch('$K1', '$W[ 1]' ) ._c_M13Ch('$K1', '$W[ 2]' ) . _c_M14Ch('$K1', '$W[ 3]' ) ._c_M15Ch('$K1', '$W[ 4]' ) . _c_M11Ch('$K1', '$W[ 5]' ) ._c_M12Ch('$K1', '$W[ 6]' ) . _c_M13Ch('$K1', '$W[ 7]' ) ._c_M14Ch('$K1', '$W[ 8]' ) . _c_M15Ch('$K1', '$W[ 9]' ) ._c_M11Ch('$K1', '$W[10]' ) . _c_M12Ch('$K1', '$W[11]' ) ._c_M13Ch('$K1', '$W[12]' ) . _c_M14Ch('$K1', '$W[13]' ) ._c_M15Ch('$K1', '$W[14]' ) . _c_M11Ch('$K1', '$W[15]' ) ._c_M12Ch('$K1', _c_A1( 0) ) . _c_M13Ch('$K1', _c_A1( 1) ) ._c_M14Ch('$K1', _c_A1( 2) ) . _c_M15Ch('$K1', _c_A1( 3) ) ._c_M11Pa('$K2', _c_A1( 4) ) . _c_M12Pa('$K2', _c_A1( 5) ) ._c_M13Pa('$K2', _c_A1( 6) ) . _c_M14Pa('$K2', _c_A1( 7) ) ._c_M15Pa('$K2', _c_A1( 8) ) . _c_M11Pa('$K2', _c_A1( 9) ) ._c_M12Pa('$K2', _c_A1(10) ) . _c_M13Pa('$K2', _c_A1(11) ) ._c_M14Pa('$K2', _c_A1(12) ) . _c_M15Pa('$K2', _c_A1(13) ) ._c_M11Pa('$K2', _c_A1(14) ) . _c_M12Pa('$K2', _c_A1(15) ) ._c_M13Pa('$K2', _c_A1( 0) ) . _c_M14Pa('$K2', _c_A1( 1) ) ._c_M15Pa('$K2', _c_A1( 2) ) . _c_M11Pa('$K2', _c_A1( 3) ) ._c_M12Pa('$K2', _c_A1( 4) ) . _c_M13Pa('$K2', _c_A1( 5) ) ._c_M14Pa('$K2', _c_A1( 6) ) . _c_M15Pa('$K2', _c_A1( 7) ) ._c_M11Ma('$K3', _c_A1( 8) ) . _c_M12Ma('$K3', _c_A1( 9) ) ._c_M13Ma('$K3', _c_A1(10) ) . _c_M14Ma('$K3', _c_A1(11) ) ._c_M15Ma('$K3', _c_A1(12) ) . _c_M11Ma('$K3', _c_A1(13) ) ._c_M12Ma('$K3', _c_A1(14) ) . _c_M13Ma('$K3', _c_A1(15) ) ._c_M14Ma('$K3', _c_A1( 0) ) . _c_M15Ma('$K3', _c_A1( 1) ) ._c_M11Ma('$K3', _c_A1( 2) ) . _c_M12Ma('$K3', _c_A1( 3) ) ._c_M13Ma('$K3', _c_A1( 4) ) . _c_M14Ma('$K3', _c_A1( 5) ) ._c_M15Ma('$K3', _c_A1( 6) ) . _c_M11Ma('$K3', _c_A1( 7) ) ._c_M12Ma('$K3', _c_A1( 8) ) . _c_M13Ma('$K3', _c_A1( 9) ) ._c_M14Ma('$K3', _c_A1(10) ) . _c_M15Ma('$K3', _c_A1(11) ) ._c_M11Pa('$K4', _c_A1(12) ) . _c_M12Pa('$K4', _c_A1(13) ) ._c_M13Pa('$K4', _c_A1(14) ) . _c_M14Pa('$K4', _c_A1(15) ) ._c_M15Pa('$K4', _c_A1( 0) ) . _c_M11Pa('$K4', _c_A1( 1) ) ._c_M12Pa('$K4', _c_A1( 2) ) . _c_M13Pa('$K4', _c_A1( 3) ) ._c_M14Pa('$K4', _c_A1( 4) ) . _c_M15Pa('$K4', _c_A1( 5) ) ._c_M11Pa('$K4', _c_A1( 6) ) . _c_M12Pa('$K4', _c_A1( 7) ) ._c_M13Pa('$K4', _c_A1( 8) ) . _c_M14Pa('$K4', _c_A1( 9) ) ._c_M15Pa('$K4', _c_A1(10) ) . _c_M11Pa('$K4', _c_A1(11) ) ._c_M12Pa('$K4', _c_A1(12) ) . _c_M13Pa('$K4', _c_A1(13) ) ._c_M14Pa('$K4', _c_A1(14) ) . _c_M15Pa('$K4', _c_A1(15) ) .' $self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;$self->{H}->[3] += $d; $self->{H}->[4] += $e;}';eval($sha1_code);sub _c_M2 { # ref. Digest::SHA sha.c (sha256 routine)my($a, $b, $c, $d, $e, $f, $g, $h, $w) = @_;"\$T1 = $h + " . _c_SIGMA1($e) . " + " . _c_Ch($e, $f, $g) ." + \$K256[\$i++] + $w; $h = \$T1 + " . _c_SIGMA0($a) ." + " . _c_Ma($a, $b, $c) . "; $d += \$T1;\n";}sub _c_M21 { _c_M2('$a', '$b', '$c', '$d', '$e', '$f', '$g', '$h', $_[0]) }sub _c_M22 { _c_M2('$h', '$a', '$b', '$c', '$d', '$e', '$f', '$g', $_[0]) }sub _c_M23 { _c_M2('$g', '$h', '$a', '$b', '$c', '$d', '$e', '$f', $_[0]) }sub _c_M24 { _c_M2('$f', '$g', '$h', '$a', '$b', '$c', '$d', '$e', $_[0]) }sub _c_M25 { _c_M2('$e', '$f', '$g', '$h', '$a', '$b', '$c', '$d', $_[0]) }sub _c_M26 { _c_M2('$d', '$e', '$f', '$g', '$h', '$a', '$b', '$c', $_[0]) }sub _c_M27 { _c_M2('$c', '$d', '$e', '$f', '$g', '$h', '$a', '$b', $_[0]) }sub _c_M28 { _c_M2('$b', '$c', '$d', '$e', '$f', '$g', '$h', '$a', $_[0]) }sub _c_W21 { my($s) = @_; '$W[' . (($s + 0) & 0xf) . ']' }sub _c_W22 { my($s) = @_; '$W[' . (($s + 14) & 0xf) . ']' }sub _c_W23 { my($s) = @_; '$W[' . (($s + 9) & 0xf) . ']' }sub _c_W24 { my($s) = @_; '$W[' . (($s + 1) & 0xf) . ']' }sub _c_A2 {my($s) = @_;"(" . _c_W21($s) . " += " . _c_sigma1(_c_W22($s)) . " + " ._c_W23($s) . " + " . _c_sigma0(_c_W24($s)) . ")";}# The following code emulates the "sha256" routine from Digest::SHA sha.cmy $sha256_code = 'my @K256 = ( # SHA-224/256 constants0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2);sub _sha256 {my($self, $block) = @_;my(@W, $a, $b, $c, $d, $e, $f, $g, $h, $i, $T1);@W = unpack("N16", $block);($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}};' ._c_M21('$W[ 0]' ) . _c_M22('$W[ 1]' ) . _c_M23('$W[ 2]' ) ._c_M24('$W[ 3]' ) . _c_M25('$W[ 4]' ) . _c_M26('$W[ 5]' ) ._c_M27('$W[ 6]' ) . _c_M28('$W[ 7]' ) . _c_M21('$W[ 8]' ) ._c_M22('$W[ 9]' ) . _c_M23('$W[10]' ) . _c_M24('$W[11]' ) ._c_M25('$W[12]' ) . _c_M26('$W[13]' ) . _c_M27('$W[14]' ) ._c_M28('$W[15]' ) ._c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) ._c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) ._c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) ._c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) ._c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) ._c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) ._c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) ._c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) ._c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) ._c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) ._c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) ._c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) ._c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) ._c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) ._c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) ._c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) .' $self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;$self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $f;$self->{H}->[6] += $g; $self->{H}->[7] += $h;}';eval($sha256_code);sub _sha512_placeholder { return }my $sha512 = \&_sha512_placeholder;my $_64bit_code = 'no warnings qw(portable);my @K512 = (0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,0x5fcb6fab3ad6faec, 0x6c44198c4a475817);@H0384 = (0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17,0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511,0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4);@H0512 = (0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,0x1f83d9abfb41bd6b, 0x5be0cd19137e2179);@H0512224 = (0x8c3d37c819544da2, 0x73e1996689dcd4d6, 0x1dfab7ae32ff9c82,0x679dd514582f9fcf, 0x0f6d2b697bd44da8, 0x77e36f7304c48942,0x3f9d85a86a1d36c8, 0x1112e6ad91d692a1);@H0512256 = (0x22312194fc2bf72c, 0x9f555fa3c84c64c2, 0x2393b86b6f53b151,0x963877195940eabd, 0x96283ee2a88effe3, 0xbe5e1e2553863992,0x2b0199fc2c85b8aa, 0x0eb72ddc81c52ca2);use warnings;sub _c_SL64 { my($x, $n) = @_; "($x << $n)" }sub _c_SR64 {my($x, $n) = @_;my $mask = (1 << (64 - $n)) - 1;"(($x >> $n) & $mask)";}sub _c_ROTRQ {my($x, $n) = @_;"(" . _c_SR64($x, $n) . " | " . _c_SL64($x, 64 - $n) . ")";}sub _c_SIGMAQ0 {my($x) = @_;"(" . _c_ROTRQ($x, 28) . " ^ " . _c_ROTRQ($x, 34) . " ^ " ._c_ROTRQ($x, 39) . ")";}sub _c_SIGMAQ1 {my($x) = @_;"(" . _c_ROTRQ($x, 14) . " ^ " . _c_ROTRQ($x, 18) . " ^ " ._c_ROTRQ($x, 41) . ")";}sub _c_sigmaQ0 {my($x) = @_;"(" . _c_ROTRQ($x, 1) . " ^ " . _c_ROTRQ($x, 8) . " ^ " ._c_SR64($x, 7) . ")";}sub _c_sigmaQ1 {my($x) = @_;"(" . _c_ROTRQ($x, 19) . " ^ " . _c_ROTRQ($x, 61) . " ^ " ._c_SR64($x, 6) . ")";}my $sha512_code = q/sub _sha512 {my($self, $block) = @_;my(@N, @W, $a, $b, $c, $d, $e, $f, $g, $h, $T1, $T2);@N = unpack("N32", $block);($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}};for ( 0 .. 15) { $W[$_] = (($N[2*$_] << 16) << 16) | $N[2*$_+1] }for (16 .. 79) { $W[$_] = / ._c_sigmaQ1(q/$W[$_- 2]/) . q/ + $W[$_- 7] + / ._c_sigmaQ0(q/$W[$_-15]/) . q/ + $W[$_-16] }for ( 0 .. 79) {$T1 = $h + / . _c_SIGMAQ1(q/$e/) .q/ + (($g) ^ (($e) & (($f) ^ ($g)))) +$K512[$_] + $W[$_];$T2 = / . _c_SIGMAQ0(q/$a/) .q/ + ((($a) & ($b)) | (($c) & (($a) | ($b))));$h = $g; $g = $f; $f = $e; $e = $d + $T1;$d = $c; $c = $b; $b = $a; $a = $T1 + $T2;}$self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;$self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $f;$self->{H}->[6] += $g; $self->{H}->[7] += $h;}/;eval($sha512_code);$sha512 = \&_sha512;';eval($_64bit_code) if $uses64bit;sub _SETBIT {my($self, $pos) = @_;my @c = unpack("C*", $self->{block});$c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3];$c[$pos >> 3] |= (0x01 << (7 - $pos % 8));$self->{block} = pack("C*", @c);}sub _CLRBIT {my($self, $pos) = @_;my @c = unpack("C*", $self->{block});$c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3];$c[$pos >> 3] &= ~(0x01 << (7 - $pos % 8));$self->{block} = pack("C*", @c);}sub _BYTECNT {my($bitcnt) = @_;$bitcnt > 0 ? 1 + (($bitcnt - 1) >> 3) : 0;}sub _digcpy {my($self) = @_;my @dig;for (@{$self->{H}}) {push(@dig, (($_>>16)>>16) & $MAX32) if $self->{alg} >= 384;push(@dig, $_ & $MAX32);}$self->{digest} = pack("N" . ($self->{digestlen}>>2), @dig);}sub _sharewind {my($self) = @_;my $alg = $self->{alg};$self->{block} = ""; $self->{blockcnt} = 0;$self->{blocksize} = $alg <= 256 ? 512 : 1024;for (qw(lenll lenlh lenhl lenhh)) { $self->{$_} = 0 }$self->{digestlen} = $alg == 1 ? 20 : ($alg % 1000)/8;if ($alg == 1) { $self->{sha} = \&_sha1; $self->{H} = [@H01] }elsif ($alg == 224) { $self->{sha} = \&_sha256; $self->{H} = [@H0224] }elsif ($alg == 256) { $self->{sha} = \&_sha256; $self->{H} = [@H0256] }elsif ($alg == 384) { $self->{sha} = $sha512; $self->{H} = [@H0384] }elsif ($alg == 512) { $self->{sha} = $sha512; $self->{H} = [@H0512] }elsif ($alg == 512224) { $self->{sha}=$sha512; $self->{H}=[@H0512224] }elsif ($alg == 512256) { $self->{sha}=$sha512; $self->{H}=[@H0512256] }push(@{$self->{H}}, 0) while scalar(@{$self->{H}}) < 8;$self;}sub _shaopen {my($alg) = @_;my($self);return unless grep { $alg == $_ } (1,224,256,384,512,512224,512256);return if ($alg >= 384 && !$uses64bit);$self->{alg} = $alg;_sharewind($self);}sub _shadirect {my($bitstr, $bitcnt, $self) = @_;my $savecnt = $bitcnt;my $offset = 0;my $blockbytes = $self->{blocksize} >> 3;while ($bitcnt >= $self->{blocksize}) {&{$self->{sha}}($self, substr($bitstr, $offset, $blockbytes));$offset += $blockbytes;$bitcnt -= $self->{blocksize};}if ($bitcnt > 0) {$self->{block} = substr($bitstr, $offset, _BYTECNT($bitcnt));$self->{blockcnt} = $bitcnt;}$savecnt;}sub _shabytes {my($bitstr, $bitcnt, $self) = @_;my($numbits);my $savecnt = $bitcnt;if ($self->{blockcnt} + $bitcnt >= $self->{blocksize}) {$numbits = $self->{blocksize} - $self->{blockcnt};$self->{block} .= substr($bitstr, 0, $numbits >> 3);$bitcnt -= $numbits;$bitstr = substr($bitstr, $numbits >> 3, _BYTECNT($bitcnt));&{$self->{sha}}($self, $self->{block});$self->{block} = "";$self->{blockcnt} = 0;_shadirect($bitstr, $bitcnt, $self);}else {$self->{block} .= substr($bitstr, 0, _BYTECNT($bitcnt));$self->{blockcnt} += $bitcnt;}$savecnt;}sub _shabits {my($bitstr, $bitcnt, $self) = @_;my($i, @buf);my $numbytes = _BYTECNT($bitcnt);my $savecnt = $bitcnt;my $gap = 8 - $self->{blockcnt} % 8;my @c = unpack("C*", $self->{block});my @b = unpack("C" . $numbytes, $bitstr);$c[$self->{blockcnt}>>3] &= (~0 << $gap);$c[$self->{blockcnt}>>3] |= $b[0] >> (8 - $gap);$self->{block} = pack("C*", @c);$self->{blockcnt} += ($bitcnt < $gap) ? $bitcnt : $gap;return($savecnt) if $bitcnt < $gap;if ($self->{blockcnt} == $self->{blocksize}) {&{$self->{sha}}($self, $self->{block});$self->{block} = "";$self->{blockcnt} = 0;}return($savecnt) if ($bitcnt -= $gap) == 0;for ($i = 0; $i < $numbytes - 1; $i++) {$buf[$i] = (($b[$i] << $gap) & 0xff) | ($b[$i+1] >> (8 - $gap));}$buf[$numbytes-1] = ($b[$numbytes-1] << $gap) & 0xff;_shabytes(pack("C*", @buf), $bitcnt, $self);$savecnt;}sub _shawrite {my($bitstr, $bitcnt, $self) = @_;return(0) unless $bitcnt > 0;no integer;my $TWO32 = 4294967296;if (($self->{lenll} += $bitcnt) >= $TWO32) {$self->{lenll} -= $TWO32;if (++$self->{lenlh} >= $TWO32) {$self->{lenlh} -= $TWO32;if (++$self->{lenhl} >= $TWO32) {$self->{lenhl} -= $TWO32;if (++$self->{lenhh} >= $TWO32) {$self->{lenhh} -= $TWO32;}}}}use integer;my $blockcnt = $self->{blockcnt};return(_shadirect($bitstr, $bitcnt, $self)) if $blockcnt == 0;return(_shabytes ($bitstr, $bitcnt, $self)) if $blockcnt % 8 == 0;return(_shabits ($bitstr, $bitcnt, $self));}my $no_downgrade = 'sub utf8::downgrade { 1 }';my $pp_downgrade = q {sub utf8::downgrade {# No need to downgrade if character and byte# semantics are equivalent. But this might# leave the UTF-8 flag set, harmlessly.require bytes;return 1 if length($_[0]) == bytes::length($_[0]);use utf8;return 0 if $_[0] =~ /[^\x00-\xff]/;$_[0] = pack('C*', unpack('U*', $_[0]));return 1;}};{no integer;if ($] < 5.006) { eval $no_downgrade }elsif ($] < 5.008) { eval $pp_downgrade }}my $WSE = 'Wide character in subroutine entry';my $MWS = 16384;sub _shaWrite {my($bytestr_r, $bytecnt, $self) = @_;return(0) unless $bytecnt > 0;croak $WSE unless utf8::downgrade($$bytestr_r, 1);return(_shawrite($$bytestr_r, $bytecnt<<3, $self)) if $bytecnt <= $MWS;my $offset = 0;while ($bytecnt > $MWS) {_shawrite(substr($$bytestr_r, $offset, $MWS), $MWS<<3, $self);$offset += $MWS;$bytecnt -= $MWS;}_shawrite(substr($$bytestr_r, $offset, $bytecnt), $bytecnt<<3, $self);}sub _shafinish {my($self) = @_;my $LENPOS = $self->{alg} <= 256 ? 448 : 896;_SETBIT($self, $self->{blockcnt}++);while ($self->{blockcnt} > $LENPOS) {if ($self->{blockcnt} < $self->{blocksize}) {_CLRBIT($self, $self->{blockcnt}++);}else {&{$self->{sha}}($self, $self->{block});$self->{block} = "";$self->{blockcnt} = 0;}}while ($self->{blockcnt} < $LENPOS) {_CLRBIT($self, $self->{blockcnt}++);}if ($self->{blocksize} > 512) {$self->{block} .= pack("N", $self->{lenhh} & $MAX32);$self->{block} .= pack("N", $self->{lenhl} & $MAX32);}$self->{block} .= pack("N", $self->{lenlh} & $MAX32);$self->{block} .= pack("N", $self->{lenll} & $MAX32);&{$self->{sha}}($self, $self->{block});}sub _shadigest { my($self) = @_; _digcpy($self); $self->{digest} }sub _shahex {my($self) = @_;_digcpy($self);join("", unpack("H*", $self->{digest}));}sub _shabase64 {my($self) = @_;_digcpy($self);my $b64 = pack("u", $self->{digest});$b64 =~ s/^.//mg;$b64 =~ s/\n//g;$b64 =~ tr|` -_|AA-Za-z0-9+/|;my $numpads = (3 - length($self->{digest}) % 3) % 3;$b64 =~ s/.{$numpads}$// if $numpads;$b64;}sub _shadsize { my($self) = @_; $self->{digestlen} }sub _shacpy {my($to, $from) = @_;$to->{alg} = $from->{alg};$to->{sha} = $from->{sha};$to->{H} = [@{$from->{H}}];$to->{block} = $from->{block};$to->{blockcnt} = $from->{blockcnt};$to->{blocksize} = $from->{blocksize};for (qw(lenhh lenhl lenlh lenll)) { $to->{$_} = $from->{$_} }$to->{digestlen} = $from->{digestlen};$to;}sub _shadup { my($self) = @_; my($copy); _shacpy($copy, $self) }sub _shadump {my $self = shift;for (qw(alg H block blockcnt lenhh lenhl lenlh lenll)) {return unless defined $self->{$_};}my @state = ();my $fmt = ($self->{alg} <= 256 ? "%08x" : "%016x");push(@state, "alg:" . $self->{alg});my @H = map { $self->{alg} <= 256 ? $_ & $MAX32 : $_ } @{$self->{H}};push(@state, "H:" . join(":", map { sprintf($fmt, $_) } @H));my @c = unpack("C*", $self->{block});push(@c, 0x00) while scalar(@c) < ($self->{blocksize} >> 3);push(@state, "block:" . join(":", map {sprintf("%02x", $_)} @c));push(@state, "blockcnt:" . $self->{blockcnt});push(@state, "lenhh:" . $self->{lenhh});push(@state, "lenhl:" . $self->{lenhl});push(@state, "lenlh:" . $self->{lenlh});push(@state, "lenll:" . $self->{lenll});join("\n", @state) . "\n";}sub _shaload {my $state = shift;my %s = ();for (split(/\n/, $state)) {s/^\s+//;s/\s+$//;next if (/^(#|$)/);my @f = split(/[:\s]+/);my $tag = shift(@f);$s{$tag} = join('', @f);}# H and block may contain arbitrary values, but check everything elsegrep { $_ == $s{alg} } (1,224,256,384,512,512224,512256) or return;length($s{H}) == ($s{alg} <= 256 ? 64 : 128) or return;length($s{block}) == ($s{alg} <= 256 ? 128 : 256) or return;{no integer;for (qw(blockcnt lenhh lenhl lenlh lenll)) {0 <= $s{$_} or return;$s{$_} <= 4294967295 or return;}$s{blockcnt} < ($s{alg} <= 256 ? 512 : 1024) or return;}my $self = _shaopen($s{alg}) or return;my @h = $s{H} =~ /(.{8})/g;for (@{$self->{H}}) {$_ = hex(shift @h);if ($self->{alg} > 256) {$_ = (($_ << 16) << 16) | hex(shift @h);}}$self->{blockcnt} = $s{blockcnt};$self->{block} = pack("H*", $s{block});$self->{block} = substr($self->{block},0,_BYTECNT($self->{blockcnt}));$self->{lenhh} = $s{lenhh};$self->{lenhl} = $s{lenhl};$self->{lenlh} = $s{lenlh};$self->{lenll} = $s{lenll};$self;}# ref. src/hmac.c from Digest::SHAsub _hmacopen {my($alg, $key) = @_;my($self);$self->{isha} = _shaopen($alg) or return;$self->{osha} = _shaopen($alg) or return;croak $WSE unless utf8::downgrade($key, 1);if (length($key) > $self->{osha}->{blocksize} >> 3) {$self->{ksha} = _shaopen($alg) or return;_shawrite($key, length($key) << 3, $self->{ksha});_shafinish($self->{ksha});$key = _shadigest($self->{ksha});}$key .= chr(0x00)while length($key) < $self->{osha}->{blocksize} >> 3;my @k = unpack("C*", $key);for (@k) { $_ ^= 0x5c }_shawrite(pack("C*", @k), $self->{osha}->{blocksize}, $self->{osha});for (@k) { $_ ^= (0x5c ^ 0x36) }_shawrite(pack("C*", @k), $self->{isha}->{blocksize}, $self->{isha});$self;}sub _hmacWrite {my($bytestr_r, $bytecnt, $self) = @_;_shaWrite($bytestr_r, $bytecnt, $self->{isha});}sub _hmacfinish {my($self) = @_;_shafinish($self->{isha});_shawrite(_shadigest($self->{isha}),$self->{isha}->{digestlen} << 3, $self->{osha});_shafinish($self->{osha});}sub _hmacdigest { my($self) = @_; _shadigest($self->{osha}) }sub _hmachex { my($self) = @_; _shahex($self->{osha}) }sub _hmacbase64 { my($self) = @_; _shabase64($self->{osha}) }# SHA and HMAC-SHA functionsmy @suffix_extern = ("", "_hex", "_base64");my @suffix_intern = ("digest", "hex", "base64");my($i, $alg);for $alg (1, 224, 256, 384, 512, 512224, 512256) {for $i (0 .. 2) {my $fcn = 'sub sha' . $alg . $suffix_extern[$i] . ' {my $state = _shaopen(' . $alg . ') or return;for (@_) { _shaWrite(\$_, length($_), $state) }_shafinish($state);_sha' . $suffix_intern[$i] . '($state);}';eval($fcn);push(@EXPORT_OK, 'sha' . $alg . $suffix_extern[$i]);$fcn = 'sub hmac_sha' . $alg . $suffix_extern[$i] . ' {my $state = _hmacopen(' . $alg . ', pop(@_)) or return;for (@_) { _hmacWrite(\$_, length($_), $state) }_hmacfinish($state);_hmac' . $suffix_intern[$i] . '($state);}';eval($fcn);push(@EXPORT_OK, 'hmac_sha' . $alg . $suffix_extern[$i]);}}# OOP methodssub hashsize { my $self = shift; _shadsize($self) << 3 }sub algorithm { my $self = shift; $self->{alg} }sub add {my $self = shift;for (@_) { _shaWrite(\$_, length($_), $self) }$self;}sub digest {my $self = shift;_shafinish($self);my $rsp = _shadigest($self);_sharewind($self);$rsp;}sub hexdigest {my $self = shift;_shafinish($self);my $rsp = _shahex($self);_sharewind($self);$rsp;}sub b64digest {my $self = shift;_shafinish($self);my $rsp = _shabase64($self);_sharewind($self);$rsp;}sub new {my($class, $alg) = @_;$alg =~ s/\D+//g if defined $alg;if (ref($class)) { # instance methodif (!defined($alg) || ($alg == $class->algorithm)) {_sharewind($class);return($class);}my $self = _shaopen($alg) or return;return(_shacpy($class, $self));}$alg = 1 unless defined $alg;my $self = _shaopen($alg) or return;bless($self, $class);$self;}sub clone {my $self = shift;my $copy = _shadup($self) or return;bless($copy, ref($self));}BEGIN { *reset = \&new }sub add_bits {my($self, $data, $nbits) = @_;unless (defined $nbits) {$nbits = length($data);$data = pack("B*", $data);}$nbits = length($data) * 8 if $nbits > length($data) * 8;_shawrite($data, $nbits, $self);return($self);}sub _bail {my $msg = shift;$msg .= ": $!";croak $msg;}sub _addfile {my ($self, $handle) = @_;my $n;my $buf = "";while (($n = read($handle, $buf, 4096))) {$self->add($buf);}_bail("Read failed") unless defined $n;$self;}{my $_can_T_filehandle;sub _istext {local *FH = shift;my $file = shift;if (! defined $_can_T_filehandle) {local $^W = 0;my $istext = eval { -T FH };$_can_T_filehandle = $@ ? 0 : 1;return $_can_T_filehandle ? $istext : -T $file;}return $_can_T_filehandle ? -T FH : -T $file;}}sub addfile {my ($self, $file, $mode) = @_;return(_addfile($self, $file)) unless ref(\$file) eq 'SCALAR';$mode = defined($mode) ? $mode : "";my ($binary, $UNIVERSAL, $BITS, $portable) =map { $_ eq $mode } ("b", "U", "0", "p");## Always interpret "-" to mean STDIN; otherwise use## sysopen to handle full range of POSIX file nameslocal *FH;$file eq '-' and open(FH, '< -')or sysopen(FH, $file, O_RDONLY)or _bail('Open failed');if ($BITS) {my ($n, $buf) = (0, "");while (($n = read(FH, $buf, 4096))) {$buf =~ s/[^01]//g;$self->add_bits($buf);}_bail("Read failed") unless defined $n;close(FH);return($self);}binmode(FH) if $binary || $portable || $UNIVERSAL;if ($UNIVERSAL && _istext(*FH, $file)) {while (<FH>) {s/\015\012/\012/g; # DOS/Windowss/\015/\012/g; # early MacOS$self->add($_);}}elsif ($portable && _istext(*FH, $file)) {while (<FH>) {s/\015?\015\012/\012/g;s/\015/\012/g;$self->add($_);}}else { $self->_addfile(*FH) }close(FH);$self;}sub getstate {my $self = shift;return _shadump($self);}sub putstate {my $class = shift;my $state = shift;if (ref($class)) { # instance methodmy $self = _shaload($state) or return;return(_shacpy($class, $self));}my $self = _shaload($state) or return;bless($self, $class);return($self);}sub dump {my $self = shift;my $file = shift;my $state = $self->getstate or return;$file = "-" if (!defined($file) || $file eq "");local *FH;open(FH, "> $file") or return;print FH $state;close(FH);return($self);}sub load {my $class = shift;my $file = shift;$file = "-" if (!defined($file) || $file eq "");local *FH;open(FH, "< $file") or return;my $str = join('', <FH>);close(FH);$class->putstate($str);}1;__END__=head1 NAMEDigest::SHA::PurePerl - Perl implementation of SHA-1/224/256/384/512=head1 SYNOPSISIn programs:# Functional interfaceuse Digest::SHA::PurePerl qw(sha1 sha1_hex sha1_base64 ...);$digest = sha1($data);$digest = sha1_hex($data);$digest = sha1_base64($data);$digest = sha256($data);$digest = sha384_hex($data);$digest = sha512_base64($data);# Object-orienteduse Digest::SHA::PurePerl;$sha = Digest::SHA::PurePerl->new($alg);$sha->add($data); # feed data into stream$sha->addfile(*F);$sha->addfile($filename);$sha->add_bits($bits);$sha->add_bits($data, $nbits);$sha_copy = $sha->clone; # make copy of digest object$state = $sha->getstate; # save current state to string$sha->putstate($state); # restore previous $state$digest = $sha->digest; # compute digest$digest = $sha->hexdigest;$digest = $sha->b64digest;From the command line:$ shasum files$ shasum --help=head1 SYNOPSIS (HMAC-SHA)# Functional interface onlyuse Digest::SHA::PurePerl qw(hmac_sha1 hmac_sha1_hex ...);$digest = hmac_sha1($data, $key);$digest = hmac_sha224_hex($data, $key);$digest = hmac_sha256_base64($data, $key);=head1 ABSTRACTDigest::SHA::PurePerl is a complete implementation of the NIST SecureHash Standard. It gives Perl programmers a convenient way to calculateSHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256message digests. The module can handle all types of input, includingpartial-byte data.=head1 DESCRIPTIONDigest::SHA::PurePerl is written entirely in Perl. If your platformhas a C compiler, you should install the functionally equivalent(but much faster) L<Digest::SHA> module.The programming interface is easy to use: it's the same one foundin CPAN's L<Digest> module. So, if your applications currentlyuse L<Digest::MD5> and you'd prefer the stronger security of SHA,it's a simple matter to convert them.The interface provides two ways to calculate digests: all-at-once,or in stages. To illustrate, the following short program computesthe SHA-256 digest of "hello world" using each approach:use Digest::SHA::PurePerl qw(sha256_hex);$data = "hello world";@frags = split(//, $data);# all-at-once (Functional style)$digest1 = sha256_hex($data);# in-stages (OOP style)$state = Digest::SHA::PurePerl->new(256);for (@frags) { $state->add($_) }$digest2 = $state->hexdigest;print $digest1 eq $digest2 ?"whew!\n" : "oops!\n";To calculate the digest of an n-bit message where I<n> is not amultiple of 8, use the I<add_bits()> method. For example, considerthe 446-bit message consisting of the bit-string "110" repeated148 times, followed by "11". Here's how to display its SHA-1digest:use Digest::SHA::PurePerl;$bits = "110" x 148 . "11";$sha = Digest::SHA::PurePerl->new(1)->add_bits($bits);print $sha->hexdigest, "\n";Note that for larger bit-strings, it's more efficient to use thetwo-argument version I<add_bits($data, $nbits)>, where I<$data> isin the customary packed binary format used for Perl strings.The module also lets you save intermediate SHA states to a string. TheI<getstate()> method generates portable, human-readable text describingthe current state of computation. You can subsequently restore thatstate with I<putstate()> to resume where the calculation left off.To see what a state description looks like, just run the following:use Digest::SHA::PurePerl;print Digest::SHA::PurePerl->new->add("Shaw" x 1962)->getstate;As an added convenience, the Digest::SHA::PurePerl module offersroutines to calculate keyed hashes using the HMAC-SHA-1/224/256/384/512algorithms. These services exist in functional form only, andmimic the style and behavior of the I<sha()>, I<sha_hex()>, andI<sha_base64()> functions.# Test vector from draft-ietf-ipsec-ciph-sha-256-01.txtuse Digest::SHA::PurePerl qw(hmac_sha256_hex);print hmac_sha256_hex("Hi There", chr(0x0b) x 32), "\n";=head1 UNICODE AND SIDE EFFECTSPerl supports Unicode strings as of version 5.6. Such strings maycontain wide characters, namely, characters whose ordinal values aregreater than 255. This can cause problems for digest algorithms suchas SHA that are specified to operate on sequences of bytes.The rule by which Digest::SHA::PurePerl handles a Unicode string is easyto state, but potentially confusing to grasp: the string is interpretedas a sequence of byte values, where each byte value is equal to theordinal value (viz. code point) of its corresponding Unicode character.That way, the Unicode string 'abc' has exactly the same digest value asthe ordinary string 'abc'.Since a wide character does not fit into a byte, the Digest::SHA::PurePerlroutines croak if they encounter one. Whereas if a Unicode stringcontains no wide characters, the module accepts it quite happily.The following code illustrates the two cases:$str1 = pack('U*', (0..255));print sha1_hex($str1); # ok$str2 = pack('U*', (0..256));print sha1_hex($str2); # croaksBe aware that the digest routines silently convert UTF-8 input into itsequivalent byte sequence in the native encoding (cf. utf8::downgrade).This side effect influences only the way Perl stores the data internally,but otherwise leaves the actual value of the data intact.=head1 NIST STATEMENT ON SHA-1NIST acknowledges that the work of Prof. Xiaoyun Wang constitutes apractical collision attack on SHA-1. Therefore, NIST encourages therapid adoption of the SHA-2 hash functions (e.g. SHA-256) for applicationsrequiring strong collision resistance, such as digital signatures.ref. L<http://csrc.nist.gov/groups/ST/hash/statement.html>=head1 PADDING OF BASE64 DIGESTSBy convention, CPAN Digest modules do B<not> pad their Base64 output.Problems can occur when feeding such digests to other software thatexpects properly padded Base64 encodings.For the time being, any necessary padding must be done by the user.Fortunately, this is a simple operation: if the length of a Base64-encodeddigest isn't a multiple of 4, simply append "=" characters to the endof the digest until it is:while (length($b64_digest) % 4) {$b64_digest .= '=';}To illustrate, I<sha256_base64("abc")> is computed to beungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0which has a length of 43. So, the properly padded version isungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0==head1 EXPORTNone by default.=head1 EXPORTABLE FUNCTIONSProvided your Perl installation supports 64-bit integers, all ofthese functions will be available for use. Otherwise, you won'tbe able to perform the SHA-384 and SHA-512 transforms, both ofwhich require 64-bit operations.I<Functional style>=over 4=item B<sha1($data, ...)>=item B<sha224($data, ...)>=item B<sha256($data, ...)>=item B<sha384($data, ...)>=item B<sha512($data, ...)>=item B<sha512224($data, ...)>=item B<sha512256($data, ...)>Logically joins the arguments into a single string, and returnsits SHA-1/224/256/384/512 digest encoded as a binary string.=item B<sha1_hex($data, ...)>=item B<sha224_hex($data, ...)>=item B<sha256_hex($data, ...)>=item B<sha384_hex($data, ...)>=item B<sha512_hex($data, ...)>=item B<sha512224_hex($data, ...)>=item B<sha512256_hex($data, ...)>Logically joins the arguments into a single string, and returnsits SHA-1/224/256/384/512 digest encoded as a hexadecimal string.=item B<sha1_base64($data, ...)>=item B<sha224_base64($data, ...)>=item B<sha256_base64($data, ...)>=item B<sha384_base64($data, ...)>=item B<sha512_base64($data, ...)>=item B<sha512224_base64($data, ...)>=item B<sha512256_base64($data, ...)>Logically joins the arguments into a single string, and returnsits SHA-1/224/256/384/512 digest encoded as a Base64 string.It's important to note that the resulting string does B<not> containthe padding characters typical of Base64 encodings. This omission isdeliberate, and is done to maintain compatibility with the family ofCPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details.=backI<OOP style>=over 4=item B<new($alg)>Returns a new Digest::SHA::PurePerl object. Allowed values forI<$alg> are 1, 224, 256, 384, 512, 512224, or 512256. It's alsopossible to use common string representations of the algorithm(e.g. "sha256", "SHA-384"). If the argument is missing, SHA-1 willbe used by default.Invoking I<new> as an instance method will reset the object to theinitial state associated with I<$alg>. If the argument is missing,the object will continue using the same algorithm that was selectedat creation.=item B<reset($alg)>This method has exactly the same effect as I<new($alg)>. In fact,I<reset> is just an alias for I<new>.=item B<hashsize>Returns the number of digest bits for this object. The values are160, 224, 256, 384, 512, 224, and 256 for SHA-1, SHA-224, SHA-256,SHA-384, SHA-512, SHA-512/224, and SHA-512/256, respectively.=item B<algorithm>Returns the digest algorithm for this object. The values are 1,224, 256, 384, 512, 512224, and 512256 for SHA-1, SHA-224, SHA-256,SHA-384, SHA-512, SHA-512/224, and SHA-512/256, respectively.=item B<clone>Returns a duplicate copy of the object.=item B<add($data, ...)>Logically joins the arguments into a single string, and uses it toupdate the current digest state. In other words, the followingstatements have the same effect:$sha->add("a"); $sha->add("b"); $sha->add("c");$sha->add("a")->add("b")->add("c");$sha->add("a", "b", "c");$sha->add("abc");The return value is the updated object itself.=item B<add_bits($data, $nbits)>=item B<add_bits($bits)>Updates the current digest state by appending bits to it. Thereturn value is the updated object itself.The first form causes the most-significant I<$nbits> of I<$data>to be appended to the stream. The I<$data> argument is in thecustomary binary format used for Perl strings.The second form takes an ASCII string of "0" and "1" characters asits argument. It's equivalent to$sha->add_bits(pack("B*", $bits), length($bits));So, the following two statements do the same thing:$sha->add_bits("111100001010");$sha->add_bits("\xF0\xA0", 12);=item B<addfile(*FILE)>Reads from I<FILE> until EOF, and appends that data to the currentstate. The return value is the updated object itself.=item B<addfile($filename [, $mode])>Reads the contents of I<$filename>, and appends that data to the currentstate. The return value is the updated object itself.By default, I<$filename> is simply opened and read; no special modesor I/O disciplines are used. To change this, set the optional I<$mode>argument to one of the following values:"b" read file in binary mode"U" use universal newlines"p" use portable mode (to be deprecated)"0" use BITS modeThe "U" mode is modeled on Python's "Universal Newlines" concept, wherebyDOS and Mac OS line terminators are converted internally to UNIX newlinesbefore processing. This ensures consistent digest values when workingsimultaneously across multiple file systems. B<The "U" mode influencesonly text files>, namely those passing Perl's I<-T> test; binary filesare processed with no translation whatsoever.The "p" mode differs from "U" only in that it treats "\r\r\n" as a singlenewline, a quirky feature designed to accommodate legacy applications thatoccasionally added an extra carriage return before DOS line terminators.The "p" mode will be phased out eventually in favor of the cleaner andmore well-established Universal Newlines concept.The BITS mode ("0") interprets the contents of I<$filename> as a logicalstream of bits, where each ASCII '0' or '1' character represents a 0 or1 bit, respectively. All other characters are ignored. This providesa convenient way to calculate the digest values of partial-byte databy using files, rather than having to write separate programs employingthe I<add_bits> method.=item B<getstate>Returns a string containing a portable, human-readable representationof the current SHA state.=item B<putstate($str)>Returns a Digest::SHA object representing the SHA state containedin I<$str>. The format of I<$str> matches the format of the outputproduced by method I<getstate>. If called as a class method, a newobject is created; if called as an instance method, the object is resetto the state contained in I<$str>.=item B<dump($filename)>Writes the output of I<getstate> to I<$filename>. If the argument ismissing, or equal to the empty string, the state information will bewritten to STDOUT.=item B<load($filename)>Returns a Digest::SHA object that results from calling I<putstate> onthe contents of I<$filename>. If the argument is missing, or equal tothe empty string, the state information will be read from STDIN.=item B<digest>Returns the digest encoded as a binary string.Note that the I<digest> method is a read-once operation. Once ithas been performed, the Digest::SHA::PurePerl object is automaticallyreset in preparation for calculating another digest value. CallI<$sha-E<gt>clone-E<gt>digest> if it's necessary to preserve theoriginal digest state.=item B<hexdigest>Returns the digest encoded as a hexadecimal string.Like I<digest>, this method is a read-once operation. CallI<$sha-E<gt>clone-E<gt>hexdigest> if it's necessary to preservethe original digest state.=item B<b64digest>Returns the digest encoded as a Base64 string.Like I<digest>, this method is a read-once operation. CallI<$sha-E<gt>clone-E<gt>b64digest> if it's necessary to preservethe original digest state.It's important to note that the resulting string does B<not> containthe padding characters typical of Base64 encodings. This omission isdeliberate, and is done to maintain compatibility with the family ofCPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details.=backI<HMAC-SHA-1/224/256/384/512>=over 4=item B<hmac_sha1($data, $key)>=item B<hmac_sha224($data, $key)>=item B<hmac_sha256($data, $key)>=item B<hmac_sha384($data, $key)>=item B<hmac_sha512($data, $key)>=item B<hmac_sha512224($data, $key)>=item B<hmac_sha512256($data, $key)>Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,with the result encoded as a binary string. Multiple I<$data>arguments are allowed, provided that I<$key> is the last argumentin the list.=item B<hmac_sha1_hex($data, $key)>=item B<hmac_sha224_hex($data, $key)>=item B<hmac_sha256_hex($data, $key)>=item B<hmac_sha384_hex($data, $key)>=item B<hmac_sha512_hex($data, $key)>=item B<hmac_sha512224_hex($data, $key)>=item B<hmac_sha512256_hex($data, $key)>Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,with the result encoded as a hexadecimal string. Multiple I<$data>arguments are allowed, provided that I<$key> is the last argumentin the list.=item B<hmac_sha1_base64($data, $key)>=item B<hmac_sha224_base64($data, $key)>=item B<hmac_sha256_base64($data, $key)>=item B<hmac_sha384_base64($data, $key)>=item B<hmac_sha512_base64($data, $key)>=item B<hmac_sha512224_base64($data, $key)>=item B<hmac_sha512256_base64($data, $key)>Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,with the result encoded as a Base64 string. Multiple I<$data>arguments are allowed, provided that I<$key> is the last argumentin the list.It's important to note that the resulting string does B<not> containthe padding characters typical of Base64 encodings. This omission isdeliberate, and is done to maintain compatibility with the family ofCPAN Digest modules. See L</"PADDING OF BASE64 DIGESTS"> for details.=back=head1 SEE ALSOL<Digest>, L<Digest::SHA>The Secure Hash Standard (Draft FIPS PUB 180-4) can be found at:L<http://csrc.nist.gov/publications/drafts/fips180-4/Draft-FIPS180-4_Feb2011.pdf>The Keyed-Hash Message Authentication Code (HMAC):L<http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf>=head1 AUTHORMark Shelor <mshelor@cpan.org>=head1 ACKNOWLEDGMENTSThe author is particularly grateful toGisle AasSean BurkeChris CareyAlexandr CiorniiChris DavidJim DobleThomas DrugeonJulius DuqueJeffrey FriedlRobert GilmourBrian GladmanAdam KennedyMark LawrenceAndy LesterAlex MuntadaSteve PetersChris SkiscimMartin ThurnGunnar WolfAdam Woodbury"A candle in the bar was lighting up the dirty windows, on one ofwhich was a notice, in white enamel letters, telling customers theycould bring their own food: ON PEUT APPORTER SON MANGER, from whichthe M and the last R were missing."- Maigret's War of Nerves=head1 COPYRIGHT AND LICENSECopyright (C) 2003-2017 Mark ShelorThis library is free software; you can redistribute it and/or modifyit under the same terms as Perl itself.L<perlartistic>=cut